Nuclei Segmentation

[1]:
import histomicstk as htk

import numpy as np
import scipy as sp

import skimage.io
import skimage.measure
import skimage.color

import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
%matplotlib inline

#Some nice default configuration for plots
plt.rcParams['figure.figsize'] = 10, 10
plt.rcParams['image.cmap'] = 'gray'
titlesize = 24
INFO:root:Created LRU Cache for 'tilesource' with 4011 maximum size
INFO:root:Notice: Could not import MapnikTileSource

Load input image

[2]:
input_image_file = ('https://data.kitware.com/api/v1/file/'
                    '576ad39b8d777f1ecd6702f2/download')  # Easy1.png

im_input = skimage.io.imread(input_image_file)[:, :, :3]

plt.imshow(im_input)
_ = plt.title('Input Image', fontsize=16)
../_images/examples_nuclei_segmentation_3_0.png

Perform color normalization

[4]:
# Load reference image for normalization
ref_image_file = ('https://data.kitware.com/api/v1/file/'
                  '57718cc28d777f1ecd8a883c/download')  # L1.png

im_reference = skimage.io.imread(ref_image_file)[:, :, :3]

# get mean and stddev of reference image in lab space
mean_ref, std_ref = htk.preprocessing.color_conversion.lab_mean_std(im_reference)

# perform reinhard color normalization
im_nmzd = htk.preprocessing.color_normalization.reinhard(im_input, mean_ref, std_ref)

# Display results
plt.figure(figsize=(20, 10))

plt.subplot(1, 2, 1)
plt.imshow(im_reference)
_ = plt.title('Reference Image', fontsize=titlesize)

plt.subplot(1, 2, 2)
plt.imshow(im_nmzd)
_ = plt.title('Normalized Input Image', fontsize=titlesize)
../_images/examples_nuclei_segmentation_5_0.png

Perform color deconvolution

[5]:
# create stain to color map
stainColorMap = {
    'hematoxylin': [0.65, 0.70, 0.29],
    'eosin':       [0.07, 0.99, 0.11],
    'dab':         [0.27, 0.57, 0.78],
    'null':        [0.0, 0.0, 0.0]
}

# specify stains of input image
stain_1 = 'hematoxylin'   # nuclei stain
stain_2 = 'eosin'         # cytoplasm stain
stain_3 = 'null'          # set to null of input contains only two stains

# create stain matrix
W = np.array([stainColorMap[stain_1],
              stainColorMap[stain_2],
              stainColorMap[stain_3]]).T

# perform standard color deconvolution
im_stains = htk.preprocessing.color_deconvolution.color_deconvolution(im_nmzd, W).Stains

# Display results
plt.figure(figsize=(20, 10))

plt.subplot(1, 2, 1)
plt.imshow(im_stains[:, :, 0])
plt.title(stain_1, fontsize=titlesize)

plt.subplot(1, 2, 2)
plt.imshow(im_stains[:, :, 1])
_ = plt.title(stain_2, fontsize=titlesize)
../_images/examples_nuclei_segmentation_7_0.png

Segment Nuclei

[8]:
# get nuclei/hematoxylin channel
im_nuclei_stain = im_stains[:, :, 0]

# segment foreground
foreground_threshold = 60

im_fgnd_mask = sp.ndimage.morphology.binary_fill_holes(
    im_nuclei_stain < foreground_threshold)

# run adaptive multi-scale LoG filter
min_radius = 10
max_radius = 15

im_log_max, im_sigma_max = htk.filters.shape.cdog(
    im_nuclei_stain, im_fgnd_mask,
    sigma_min=min_radius * np.sqrt(2),
    sigma_max=max_radius * np.sqrt(2)
)

# detect and segment nuclei using local maximum clustering
local_max_search_radius = 10

im_nuclei_seg_mask, seeds, maxima = htk.segmentation.nuclear.max_clustering(
    im_log_max, im_fgnd_mask, local_max_search_radius)

# filter out small objects
min_nucleus_area = 80

im_nuclei_seg_mask = htk.segmentation.label.area_open(
    im_nuclei_seg_mask, min_nucleus_area).astype(np.int)

# compute nuclei properties
objProps = skimage.measure.regionprops(im_nuclei_seg_mask)

print 'Number of nuclei = ', len(objProps)

# Display results
plt.figure(figsize=(20, 10))

plt.subplot(1, 2, 1)
plt.imshow(skimage.color.label2rgb(im_nuclei_seg_mask, im_input, bg_label=0), origin='lower')
plt.title('Nuclei segmentation mask overlay', fontsize=titlesize)

plt.subplot(1, 2, 2)
plt.imshow( im_input )
plt.xlim([0, im_input.shape[1]])
plt.ylim([0, im_input.shape[0]])
plt.title('Nuclei bounding boxes', fontsize=titlesize)

for i in range(len(objProps)):

    c = [objProps[i].centroid[1], objProps[i].centroid[0], 0]
    width = objProps[i].bbox[3] - objProps[i].bbox[1] + 1
    height = objProps[i].bbox[2] - objProps[i].bbox[0] + 1

    cur_bbox = {
        "type":        "rectangle",
        "center":      c,
        "width":       width,
        "height":      height,
    }

    plt.plot(c[0], c[1], 'g+')
    mrect = mpatches.Rectangle([c[0] - 0.5 * width, c[1] - 0.5 * height] ,
                               width, height, fill=False, ec='g', linewidth=2)
    plt.gca().add_patch(mrect)
Number of nuclei =  65
../_images/examples_nuclei_segmentation_9_1.png
[ ]: