Source code for histomicstk.saliency.tissue_detection

"""
Created on Wed Sep 18 03:29:24 2019.

@author: mtageld
"""

import cv2
import numpy as np
from PIL import Image

from histomicstk.annotations_and_masks.annotation_and_mask_utils import \
    get_image_from_htk_response
from histomicstk.annotations_and_masks.masks_to_annotations_handler import (
    get_annotation_documents_from_contours, get_contours_from_mask)
from histomicstk.preprocessing.color_deconvolution.color_deconvolution import \
    color_deconvolution_routine

Image.MAX_IMAGE_PIXELS = None


[docs] def get_slide_thumbnail(gc, slide_id): """Get slide thumbnail using girder client. Parameters ---------- gc : object girder client to use slide_id : str girder ID of slide Returns ------- np array RGB slide thumbnail at lowest level """ getStr = '/item/%s/tiles/thumbnail' % (slide_id) resp = gc.get(getStr, jsonResp=False) return get_image_from_htk_response(resp)
def _deconv_color(im, **kwargs): """Wrap around color_deconvolution_routine (compatibility).""" Stains, _, _ = color_deconvolution_routine(im, **kwargs) return Stains, 0
[docs] def get_tissue_mask( thumbnail_im, deconvolve_first=False, stain_unmixing_routine_kwargs=None, n_thresholding_steps=1, sigma=0., min_size=500): """Get binary tissue mask from slide thumbnail. Parameters ---------- thumbnail_im : np array (m, n, 3) nd array of thumbnail RGB image or (m, n) nd array of thumbnail grayscale image deconvolve_first : bool use hematoxylin channel to find cellular areas? This will make things ever-so-slightly slower but is better in getting rid of sharpie marker (if it's green, for example). Sometimes things work better without it, though. stain_matrix_method : str see deconv_color method in seed_utils n_thresholding_steps : int number of gaussian smoothing steps sigma : float sigma of gaussian filter min_size : int minimum size (in pixels) of contiguous tissue regions to keep Returns ------- np int32 array each unique value represents a unique tissue region np bool array largest contiguous tissue region. """ from scipy import ndimage from skimage.filters import gaussian, threshold_otsu stain_unmixing_routine_kwargs = ( {} if stain_unmixing_routine_kwargs is None else stain_unmixing_routine_kwargs) if deconvolve_first and (len(thumbnail_im.shape) == 3): # deconvolvve to ge hematoxylin channel (cellular areas) # hematoxylin channel return shows MINIMA so we invert stain_unmixing_routine_kwargs['stains'] = ['hematoxylin', 'eosin'] Stains, _, _ = color_deconvolution_routine( thumbnail_im, **stain_unmixing_routine_kwargs) thumbnail = 255 - Stains[..., 0] elif len(thumbnail_im.shape) == 3: # grayscale thumbnail (inverted) thumbnail = 255 - cv2.cvtColor(thumbnail_im, cv2.COLOR_BGR2GRAY) else: thumbnail = thumbnail_im for _ in range(n_thresholding_steps): # gaussian smoothing of grayscale thumbnail if sigma > 0.0: thumbnail = gaussian( thumbnail, sigma=sigma, out=None, mode='nearest', preserve_range=True) # get threshold to keep analysis region try: thresh = threshold_otsu(thumbnail[thumbnail > 0]) except ValueError: # all values are zero thresh = 0 # replace pixels outside analysis region with upper quantile pixels thumbnail[thumbnail < thresh] = 0 # convert to binary mask = 0 + (thumbnail > 0) # find connected components labeled, _ = ndimage.label(mask) # only keep unique, counts = np.unique(labeled[labeled > 0], return_counts=True) discard = np.isin(labeled, unique[counts < min_size]) discard = discard.reshape(labeled.shape) labeled[discard] = 0 # largest tissue region mask = labeled == unique[np.argmax(counts)] return labeled, mask
[docs] def get_tissue_boundary_annotation_documents( gc, slide_id, labeled, color='rgb(0,0,0)', group='tissue', annprops=None): """Get annotation documents of tissue boundaries to visualize on DSA. Parameters ---------- gc : object girder client to use slide_id : str girder ID of slide labeled : np array mask of tissue regions using slide thumbnail. This could either be a binary mask or a mask where each unique value corresponds to one tissue region. It will be binalized anyways. This can be obtained using get_tissue_mask(). color : str color to assign to boundaries. format like rgb(0,0,0) group : str label for annotations annpops : dict properties of annotation elements. Contains the following keys F, X_OFFSET, Y_OFFSET, opacity, lineWidth. Refer to get_single_annotation_document_from_contours() for details. Returns ------- list of dicts each dict is an annotation document that you can post to DSA """ from pandas import DataFrame # Get annotations properties if annprops is None: slide_info = gc.get('item/%s/tiles' % slide_id) annprops = { 'F': slide_info['sizeX'] / labeled.shape[1], # relative to base 'X_OFFSET': 0, 'Y_OFFSET': 0, 'opacity': 0, 'lineWidth': 4.0, } # Define GTCodes dataframe GTCodes_df = DataFrame(columns=['group', 'GT_code', 'color']) GTCodes_df.loc['tissue', 'group'] = group GTCodes_df.loc['tissue', 'GT_code'] = 1 GTCodes_df.loc['tissue', 'color'] = color # get annotation docs contours_tissue = get_contours_from_mask( MASK=0 + (labeled > 0), GTCodes_df=GTCodes_df, get_roi_contour=False, MIN_SIZE=0, MAX_SIZE=None, verbose=False, monitorPrefix='tissue: getting contours') annotation_docs = get_annotation_documents_from_contours( contours_tissue.copy(), docnamePrefix='test', annprops=annprops, verbose=False, monitorPrefix='tissue : annotation docs') return annotation_docs
[docs] def threshold_multichannel( im, thresholds, channels=None, just_threshold=False, get_tissue_mask_kwargs=None): """Threshold a multi-channel image (eg. HSI image) to get tissue. The relies on the fact that oftentimes some slide elements (eg blood or whitespace) have a characteristic hue/saturation/intensity. This thresholds along each HSI channel, then optionally uses the get_tissue_mask() method (gaussian smoothing, otsu thresholding, connected components) to get each contiguous tissue piece. Parameters ---------- im : np array (m, n, 3) array of Hue, Saturation, Intensity (in this order) thresholds : dict Each entry is a dict containing the keys min and max channels : list names of channels, in order (eg. hue, saturation, intensity) just_threshold : bool if False, get_tissue_mask() is used to smooth result and get regions. get_tissue_mask_kwargs : dict key-value pairs of parameters to pass to get_tissue_mask() Returns ------- np int32 array if not just_threshold, unique values represent unique tissue regions np bool array if not just_threshold, largest contiguous tissue region. """ channels = ['hue', 'saturation', 'intensity'] if channels is None else channels if get_tissue_mask_kwargs is None: get_tissue_mask_kwargs = { 'n_thresholding_steps': 1, 'sigma': 5.0, 'min_size': 10, } # threshold each channel mask = np.ones(im.shape[:2]) for ax, ch in enumerate(channels): channel = im[..., ax].copy() mask[channel < thresholds[ch]['min']] = 0 mask[channel >= thresholds[ch]['max']] = 0 # smoothing, otsu thresholding then connected components if just_threshold or (np.unique(mask).shape[0] < 1): labeled = mask else: get_tissue_mask_kwargs['deconvolve_first'] = False labeled, mask = get_tissue_mask(mask, **get_tissue_mask_kwargs) return labeled, mask
def _get_largest_regions(labeled, top_n=10): labeled_im = labeled.copy() unique, counts = np.unique(labeled_im[labeled_im > 0], return_counts=True) keep = unique[np.argsort(counts)[-top_n:]] mask = np.zeros(labeled_im.shape) keep_pixels = np.isin(labeled_im, keep) keep_pixels = keep_pixels.reshape(labeled_im.shape) mask[keep_pixels] = 1 labeled_im[mask == 0] = 0 return labeled_im