Source code for histomicstk.saliency.cellularity_detection_thresholding

"""
Created on Tue Oct 22 02:37:52 2019.

@author: mtageld
"""
import numpy as np
from PIL import Image

from histomicstk.annotations_and_masks.annotation_and_mask_utils import \
    get_image_from_htk_response
from histomicstk.annotations_and_masks.masks_to_annotations_handler import (
    get_annotation_documents_from_contours, get_contours_from_mask)
from histomicstk.features.compute_intensity_features import \
    compute_intensity_features
from histomicstk.preprocessing.color_conversion import (lab_mean_std,
                                                        rgb_to_hsi, rgb_to_lab)
from histomicstk.preprocessing.color_deconvolution import (
    _reorder_stains, color_deconvolution_routine,
    rgb_separate_stains_macenko_pca)
from histomicstk.preprocessing.color_normalization import (
    deconvolution_based_normalization, reinhard)
from histomicstk.saliency.tissue_detection import (_get_largest_regions,
                                                   get_slide_thumbnail,
                                                   get_tissue_mask,
                                                   threshold_multichannel)
from histomicstk.utils.general_utils import Base_HTK_Class

Image.MAX_IMAGE_PIXELS = None


[docs] class CDT_single_tissue_piece: """Detect various regions in a single tissue piece (internal).""" def __init__(self, cdt, tissue_mask, monitorPrefix=''): """Detect whitespace, saliency, etc in one tissue piece (Internal). Arguments: --------- cdt : object Cellularity_detector_thresholding instance tissue_mask : np array (m x n) mask of the tissue piece at cdt.MAG magnification monitorPrefix : str Text to prepend to printed statements """ self.cdt = cdt self.tissue_mask = 0 + tissue_mask self.monitorPrefix = monitorPrefix
[docs] def run(self): """Get cellularity and optionally visualize on DSA.""" self.restrict_mask_to_single_tissue_piece() self.cdt._print2('%s: set_tissue_rgb()' % self.monitorPrefix) self.set_tissue_rgb() self.cdt._print2('%s: initialize_labeled_mask()' % self.monitorPrefix) self.initialize_labeled_mask() self.cdt._print2( '%s: assign_components_by_thresholding()' % self.monitorPrefix) self.assign_components_by_thresholding() self.cdt._print2( '%s: color_normalize_unspecified_components()' % self.monitorPrefix) self.color_normalize_unspecified_components() self.cdt._print2( '%s: find_potentially_cellular_regions()' % self.monitorPrefix) self.find_potentially_cellular_regions() self.cdt._print2( '%s: find_top_cellular_regions()' % self.monitorPrefix) self.find_top_cellular_regions() if self.cdt.visualize: self.cdt._print2('%s: visualize_results()' % self.monitorPrefix) self.visualize_results()
[docs] def restrict_mask_to_single_tissue_piece(self): """Only keep relevant part of slide mask.""" # find coordinates at scan magnification tloc = np.argwhere(self.tissue_mask) F = self.cdt.slide_info['F_tissue'] self.ymin, self.xmin = (int(j) for j in np.min(tloc, axis=0) * F) self.ymax, self.xmax = (int(j) for j in np.max(tloc, axis=0) * F) self.tissue_mask = self.tissue_mask[ int(self.ymin / F): int(self.ymax / F), int(self.xmin / F): int(self.xmax / F)]
[docs] def set_tissue_rgb(self): """Load RGB from server for single tissue piece.""" # load RGB for this tissue piece at saliency magnification getStr = '/item/%s/tiles/region?left=%d&right=%d&top=%d&bottom=%d&encoding=PNG' % ( self.cdt.slide_id, self.xmin, self.xmax, self.ymin, self.ymax, ) + '&magnification=%d' % self.cdt.MAG resp = self.cdt.gc.get(getStr, jsonResp=False) self.tissue_rgb = get_image_from_htk_response(resp)
[docs] def initialize_labeled_mask(self): """Initialize labeled components mask.""" from skimage.transform import resize # resize tissue mask to target mag self.labeled = resize( self.tissue_mask, output_shape=self.tissue_rgb.shape[:2], order=0, preserve_range=True, anti_aliasing=False) self.labeled[self.labeled > 0] = self.cdt.GTcodes.loc[ 'not_specified', 'GT_code']
[docs] def assign_components_by_thresholding(self): """Get components by thresholding in HSI and LAB spaces.""" # get HSI and LAB images self.cdt._print2( '%s: -- get HSI and LAB images ...' % self.monitorPrefix) tissue_hsi = rgb_to_hsi(self.tissue_rgb) tissue_lab = rgb_to_lab(self.tissue_rgb) # extract components using HSI/LAB thresholds hsi_components = self.cdt.hsi_thresholds.keys() lab_components = self.cdt.lab_thresholds.keys() for component in self.cdt.ordered_components: self.cdt._print2('%s: -- thresholding %s ...' % ( self.monitorPrefix, component)) if component in hsi_components: lab, _ = threshold_multichannel( tissue_hsi, channels=['hue', 'saturation', 'intensity'], thresholds=self.cdt.hsi_thresholds[component], just_threshold=False, get_tissue_mask_kwargs=self.cdt.get_tissue_mask_kwargs2) elif component in lab_components: lab, _ = threshold_multichannel( tissue_lab, channels=['l', 'a', 'b'], thresholds=self.cdt.lab_thresholds[component], just_threshold=True, get_tissue_mask_kwargs=self.cdt.get_tissue_mask_kwargs2) else: msg = 'Unknown component name.' raise ValueError(msg) lab[self.labeled == 0] = 0 # restrict to tissue mask self.labeled[lab > 0] = self.cdt.GTcodes.loc[component, 'GT_code'] # This deals with holes in tissue self.labeled[self.labeled == 0] = self.cdt.GTcodes.loc[ 'outside_tissue', 'GT_code']
[docs] def color_normalize_unspecified_components(self): """Color normalize "true" tissue components.""" if self.cdt.color_normalization_method == 'reinhard': self.cdt._print2( '%s: -- reinhard normalization ...' % self.monitorPrefix) self.tissue_rgb = reinhard( self.tissue_rgb, target_mu=self.cdt.target_stats_reinhard['mu'], target_sigma=self.cdt.target_stats_reinhard['sigma'], mask_out=self.labeled != self.cdt.GTcodes .loc['not_specified', 'GT_code']) elif self.cdt.color_normalization_method == 'macenko_pca': self.cdt._print2( '%s: -- macenko normalization ...' % self.monitorPrefix) self.tissue_rgb = deconvolution_based_normalization( self.tissue_rgb, W_target=self.cdt.target_W_macenko, mask_out=self.labeled != self.cdt.GTcodes .loc['not_specified', 'GT_code'], stain_unmixing_routine_params=self. cdt.stain_unmixing_routine_params) else: self.cdt._print2('%s: -- No normalization!' % self.monitorPrefix)
[docs] def find_potentially_cellular_regions(self): """Find regions that are potentially cellular.""" from scipy import ndimage from skimage.filters import gaussian mask_out = self.labeled != self.cdt.GTcodes.loc[ 'not_specified', 'GT_code'] # deconvolvve to ge hematoxylin channel (cellular areas) # hematoxylin channel return shows MINIMA so we invert self.tissue_htx, _, _ = color_deconvolution_routine( self.tissue_rgb, mask_out=mask_out, **self.cdt.stain_unmixing_routine_params) self.tissue_htx = 255 - self.tissue_htx[..., 0] # get cellular regions by threshold HTX stain channel self.maybe_cellular, _ = get_tissue_mask( self.tissue_htx.copy(), deconvolve_first=False, n_thresholding_steps=1, sigma=self.cdt.cellular_step1_sigma, min_size=self.cdt.cellular_step1_min_size) # Second, low-pass filter to dilate and smooth a bit self.maybe_cellular = gaussian( 0 + (self.maybe_cellular > 0), sigma=self.cdt.cellular_step2_sigma, out=None, mode='nearest', preserve_range=True) # find connected components self.maybe_cellular, _ = ndimage.label(self.maybe_cellular) # restrict cellular regions to not-otherwise-specified self.maybe_cellular[mask_out] = 0 # assign to mask self.labeled[self.maybe_cellular > 0] = self.cdt.GTcodes.loc[ 'maybe_cellular', 'GT_code']
[docs] def find_top_cellular_regions(self): """Keep largest and most cellular regions.""" # keep only largest n regions regions top_cellular_mask = _get_largest_regions( self.maybe_cellular, top_n=self.cdt.cellular_largest_n) top_cellular = self.maybe_cellular.copy() top_cellular[top_cellular_mask == 0] = 0 # get intensity features of hematoxylin channel for each region intensity_feats = compute_intensity_features( im_label=top_cellular, im_intensity=self.tissue_htx, feature_list=['Intensity.Mean']) unique = np.unique(top_cellular[top_cellular > 0]) intensity_feats.index = unique # get top n brightest regions from the largest areas intensity_feats.sort_values('Intensity.Mean', axis=0, inplace=True) discard = np.array(intensity_feats.index[:-self.cdt.cellular_top_n]) discard = np.isin(top_cellular, discard).reshape(top_cellular.shape) top_cellular[discard] = 0 # integrate into labeled mask self.labeled[top_cellular > 0] = self.cdt.GTcodes.loc[ 'top_cellular', 'GT_code']
[docs] def visualize_results(self): """Visualize results in DSA.""" # get contours contours_df = get_contours_from_mask( MASK=self.labeled, GTCodes_df=self.cdt.GTcodes.copy(), groups_to_get=self.cdt.groups_to_visualize, get_roi_contour=self.cdt.get_roi_contour, roi_group='roi', background_group='not_specified', discard_nonenclosed_background=True, MIN_SIZE=15, MAX_SIZE=None, verbose=self.cdt.verbose == 3, monitorPrefix=self.monitorPrefix + ': -- contours') # get annotation docs annprops = { 'F': self.cdt.slide_info['magnification'] / self.cdt.MAG, 'X_OFFSET': self.xmin, 'Y_OFFSET': self.ymin, 'opacity': self.cdt.opacity, 'lineWidth': self.cdt.lineWidth, } annotation_docs = get_annotation_documents_from_contours( contours_df.copy(), separate_docs_by_group=True, docnamePrefix=self.cdt.docnameprefix, annprops=annprops, verbose=self.cdt.verbose == 3, monitorPrefix=self.monitorPrefix + ': -- annotation docs') # post annotations to slide for doc in annotation_docs: _ = self.cdt.gc.post( '/annotation?itemId=' + self.cdt.slide_id, json=doc)
[docs] class Cellularity_detector_thresholding(Base_HTK_Class): """Detect cellular regions in a slide using thresholding. This uses a thresholding and stain unmixing based pipeline to detect highly-cellular regions in a slide. The run() method of the CDT_single_tissue_piece() class has the key steps of the pipeline. In summary, here are the steps involved... 1. Detect tissue from background using the RGB slide thumbnail. Each "tissue piece" is analysed independently from here onwards. The tissue_detection modeule is used for this step. A high sensitivity, low specificity setting is used here. 2. Fetch the RGB image of tissue at target magnification. A low magnification (default is 3.0) is used and is sufficient. 3. The image is converted to HSI and LAB spaces. Thresholding is performed to detect various non-salient components that often throw-off the color normalization and deconvolution algorithms. Thresholding includes both minimum and maximum values. The user can set whichever thresholds of components they would like. The development of this workflow was focused on breast cancer so the thresholded components by default are whote space (or adipose tissue), dark blue/green blotches (sharpie, inking at margin, etc), and blood. Whitespace is obtained by thresholding the saturation and intensity, while other components are obtained by thresholding LAB. 4. Now that we know where "actual" tissue is, we do a MASKED color normalization to a prespecified standard. The masking ensures the normalization routine is not thrown off by non- tissue components. 5. Perform masked stain unmixing/deconvolution to obtain the hematoxylin stain channel. 6. Smooth and threshold the hematoxylin channel. Then perform connected component analysis to find contiguous potentially-cellular regions. 7. Keep the n largest potentially-cellular regions. Then from those large regions, keep the m brightest regions (using hematoxylin channel brightness) as the final salient/cellular regions. """ def __init__(self, gc, slide_id, GTcodes, **kwargs): """Init Cellularity_Detector_Superpixels object. Arguments: --------- gc : object girder client object slide_id : str girder ID of slide GTcodes : pandas Dataframe the ground truth codes and information dataframe. WARNING: Modified inside this method so pass a copy. This is a dataframe that is indexed by the annotation group name and has the following columns... group: str group name of annotation, eg. mostly_tumor overlay_order: int how early to place the annotation in the mask. Larger values means this annotation group is overlaid last and overwrites whatever overlaps it. GT_code: int desired ground truth code (in the mask). Pixels of this value belong to corresponding group (class) is_roi: bool whether this group encodes an ROI is_background_class: bool whether this group is the default fill value inside the ROI. For example, you may decide that any pixel inside the ROI is considered stroma. color: str rgb format. eg. rgb(255,0,0) The following indexes must be present... outside_tissue, not_specified, maybe_cellular, top_cellular verbose : int 0 - Do not print to screen 1 - Print only key messages 2 - Print everything to screen 3 - print everything including from inner functions monitorPrefix : str text to prepend to printed statements logging_savepath : str or None where to save run logs suppress_warnings : bool whether to suppress warnings MAG : float magnification at which to detect cellularity color_normalization_method : str Must be in ['reinhard', 'macenko_pca', 'none'] target_W_macenko : np array 3 by 3 stain matrix for macenko normalization obtained using rgb_separate_stains_macenko_pca() and reordered such that hematoxylin and eosin are the first and second channels, respectively. target_stats_reinhard : dict must contains the keys mu and sigma. Mean and sigma of target image in LAB space for reinhard normalization. get_tissue_mask_kwargs : dict kwargs for the get_tissue_mask() method. This is used to detect tissue from the slide thumbnail. keep_components : list list of strings. Names of components to exclude by HSI thresholding. These much be present in the index of the GTcodes dataframe get_tissue_mask_kwargs2 : dict kwargs for get_tissue_mask() used for iterative smoothing and thresholding the component masks after initial thresholding using the user-defined HSI/LAB thresholds. hsi_thresholds : dict each entry is a dict containing the keys hue, saturation and intensity. Each of these is in turn also a dict containing the keys min and max. See default value below for an example. lab_thresholds : dict each entry is a dict containing the keys l, a, and b. Each of these is in turn also a dict containing the keys min and max. See default value below for an example. stain_unmixing_routine_params : dict kwargs passed as the stain_unmixing_routine_params argument to the deconvolution_based_normalization method cellular_step1_sigma : float sigma of gaussian smoothing for first cellularity step cellular_step1_min_size : int minimum contiguous size for first cellularity step cellular_step2_sigma : float sigma of gaussian smoothing for second cellularity step cellular_largest_n : int Number of large continugous cellular regions to keep cellular_top_n : int Number of final "top" cellular regions to keep visualize : bool whether to visualize results in DSA opacity : float opacity of superpixel polygons when posted to DSA. 0 (no opacity) is more efficient to render. lineWidth : float width of line when displaying region boundaries. docnameprefix : str prefix to add to annotation document name groups_to_visualize : list which groups to visualize get_roi_contour : bool whether to get the contour of the roi """ default_attr = { # The following are already assigned defaults by Base_HTK_Class # 'verbose': 1, # 'monitorPrefix': "", # 'logging_savepath': None, # 'suppress_warnings': False, 'MAG': 3.0, # Must be in ['reinhard', 'macenko_pca', 'none'] 'color_normalization_method': 'macenko_pca', # TCGA-A2-A3XS-DX1_xmin21421_ymin37486_.png, Amgad et al, 2019) # is used as the target image for reinhard & macenko normalization # for macenco (obtained using rgb_separate_stains_macenko_pca() # and using reordered such that columns are the order: # Hamtoxylin, Eosin, Null 'target_W_macenko': np.array([ [0.5807549, 0.08314027, 0.08213795], [0.71681094, 0.90081588, 0.41999816], [0.38588316, 0.42616716, -0.90380025], ]), # TCGA-A2-A3XS-DX1_xmin21421_ymin37486_.png, Amgad et al, 2019) # Reinhard color norm. standard 'target_stats_reinhard': { 'mu': np.array([8.74108109, -0.12440419, 0.0444982]), 'sigma': np.array([0.6135447, 0.10989545, 0.0286032]), }, # kwargs for getting masks for all tissue pieces (thumbnail) 'get_tissue_mask_kwargs': { 'deconvolve_first': True, 'n_thresholding_steps': 1, 'sigma': 1.5, 'min_size': 500, }, # components to extract by HSI thresholding 'keep_components': ['blue_sharpie', 'blood', 'whitespace'], # kwargs for getting components masks 'get_tissue_mask_kwargs2': { 'deconvolve_first': False, 'n_thresholding_steps': 1, 'sigma': 5.0, 'min_size': 50, }, # min/max thresholds for HSI and LAB 'hsi_thresholds': { 'whitespace': { 'hue': {'min': 0, 'max': 1.0}, 'saturation': {'min': 0, 'max': 0.2}, 'intensity': {'min': 220, 'max': 255}, }, }, 'lab_thresholds': { 'blue_sharpie': { 'l': {'min': -1000, 'max': 1000}, 'a': {'min': -1000, 'max': 1000}, 'b': {'min': -1000, 'max': -0.02}, }, 'blood': { 'l': {'min': -1000, 'max': 1000}, 'a': {'min': 0.02, 'max': 1000}, 'b': {'min': -1000, 'max': 1000}, }, }, # for stain unmixing to deconvolove and/or color normalize 'stain_unmixing_routine_params': { 'stains': ['hematoxylin', 'eosin'], 'stain_unmixing_method': 'macenko_pca', }, # params for getting cellular regions 'cellular_step1_sigma': 0., 'cellular_step1_min_size': 100, 'cellular_step2_sigma': 1.5, 'cellular_largest_n': 5, 'cellular_top_n': 2, # visualization params 'visualize': True, 'opacity': 0, 'lineWidth': 3.0, 'docnameprefix': 'cdt', 'groups_to_visualize': None, # everything 'get_roi_contour': True, } default_attr.update(kwargs) super().__init__( default_attr=default_attr) self.color_normalization_method = \ self.color_normalization_method.lower() assert self.color_normalization_method in [ 'reinhard', 'macenko_pca', 'none'] # set attribs self.gc = gc self.slide_id = slide_id self.GTcodes = GTcodes self.fix_GTcodes()
[docs] def fix_GTcodes(self): """Fix self.GTcodes (important!).""" # validate self.GTcodes.index = self.GTcodes.loc[:, 'group'] necessary_indexes = self.keep_components + [ 'outside_tissue', 'not_specified', 'maybe_cellular', 'top_cellular'] assert all(j in list(self.GTcodes.index) for j in necessary_indexes) # Make sure the first things laid out are the "background" components min_val = np.min(self.GTcodes.loc[:, 'overlay_order']) self.GTcodes.loc['outside_tissue', 'overlay_order'] = min_val - 2 self.GTcodes.loc['not_specified', 'overlay_order'] = min_val - 1 # reorder in overlay order (important) self.GTcodes.sort_values('overlay_order', axis=0, inplace=True) self.ordered_components = list(self.GTcodes.loc[:, 'group']) # only keep relevant components (for HSI/LAB thresholding) for c in self.ordered_components[:]: if c not in self.keep_components: self.ordered_components.remove(c)
[docs] def run(self): """Run full pipeline to detect cellular regions.""" # get mask, each unique value is a single tissue piece self._print1( '%s: set_slide_info_and_get_tissue_mask()' % self.monitorPrefix) labeled = self.set_slide_info_and_get_tissue_mask() # Go through tissue pieces and do run sequence unique_tvals = list(set(np.unique(labeled)) - {0}) tissue_pieces = [None for _ in range(len(unique_tvals))] for idx, tval in enumerate(unique_tvals): monitorPrefix = '%s: Tissue piece %d of %d' % ( self.monitorPrefix, idx + 1, len(unique_tvals)) self._print1(monitorPrefix) tissue_pieces[idx] = CDT_single_tissue_piece( self, tissue_mask=labeled == tval, monitorPrefix=monitorPrefix) tissue_pieces[idx].run() # delete unnecessary attributes del ( tissue_pieces[idx].tissue_rgb, # too much space tissue_pieces[idx].tissue_mask, # already part of labeled tissue_pieces[idx].maybe_cellular, # already part of labeled tissue_pieces[idx].tissue_htx, # unnecessary ) return tissue_pieces
[docs] def set_color_normalization_target( self, ref_image_path, color_normalization_method='macenko_pca'): """Set color normalization values to use from target image. Arguments: --------- ref_image_path, str > path to target (reference) image color_normalization_method, str > color normalization method to use. Currently, only > reinhard and macenko_pca are accepted. """ from imageioi.v2 import imread # read input image ref_im = np.array(imread(ref_image_path, pilmode='RGB')) # assign target values color_normalization_method = color_normalization_method.lower() if color_normalization_method == 'reinhard': mu, sigma = lab_mean_std(ref_im) self.target_stats_reinhard['mu'] = mu self.target_stats_reinhard['sigma'] = sigma elif color_normalization_method == 'macenko_pca': self.target_W_macenko = _reorder_stains( rgb_separate_stains_macenko_pca(ref_im, I_0=None), stains=['hematoxylin', 'eosin']) else: raise ValueError( 'Unknown color_normalization_method: %s' % (color_normalization_method)) self.color_normalization_method = color_normalization_method
[docs] def set_slide_info_and_get_tissue_mask(self): """Set self.slide_info dict and self.labeled tissue mask.""" # This is a persistent dict to store information about slide self.slide_info = self.gc.get('item/%s/tiles' % self.slide_id) # get tissue mask thumbnail_rgb = get_slide_thumbnail(self.gc, self.slide_id) # get labeled tissue mask -- each unique value is one tissue piece labeled, _ = get_tissue_mask( thumbnail_rgb, **self.get_tissue_mask_kwargs) if len(np.unique(labeled)) < 2: msg = 'No tissue detected!' raise ValueError(msg) # Find size relative to WSI self.slide_info['F_tissue'] = self.slide_info[ 'sizeX'] / labeled.shape[1] return labeled