Source code for histomicstk.features.compute_gradient_features

import numpy as np


[docs] def compute_gradient_features(im_label, im_intensity, num_hist_bins=10, rprops=None): """Calculates gradient features from an intensity image. Parameters ---------- im_label : array_like A labeled mask image wherein intensity of a pixel is the ID of the object it belongs to. Non-zero values are considered to be foreground objects. im_intensity : array_like Intensity image num_hist_bins: int, optional Number of bins used to computed the gradient histogram of an object. Histogram is used to energy and entropy features. Default is 10. rprops : output of skimage.measure.regionprops, optional rprops = skimage.measure.regionprops( im_label ). If rprops is not passed then it will be computed inside which will increase the computation time. Returns ------- fdata: pandas.DataFrame A pandas dataframe containing the gradient features listed below for each object/label. Notes ----- List of gradient features computed by this function: Gradient.Mag.Mean : float Mean of gradient data. Gradient.Mag.Std : float Standard deviation of gradient data. Gradient.Mag.Skewness : float Skewness of gradient data. Value is 0 when all values are equal. Gradient.Mag.Kurtosis : float Kurtosis of gradient data. Value is -3 when all values are equal. Gradient.Mag.HistEnergy : float Energy of the gradient magnitude histogram of object pixels Gradient.Mag.HistEnergy : float Entropy of the gradient magnitude histogram of object pixels. Gradient.Canny.Sum : float Sum of canny filtered gradient data. Gradient.Canny.Mean : float Mean of canny filtered gradient data. References ---------- .. [#] Daniel Zwillinger and Stephen Kokoska. "CRC standard probability and statistics tables and formulae," Crc Press, 1999. """ import pandas as pd import scipy.stats from skimage.feature import canny from skimage.measure import regionprops # List of feature names feature_list = [ 'Gradient.Mag.Mean', 'Gradient.Mag.Std', 'Gradient.Mag.Skewness', 'Gradient.Mag.Kurtosis', 'Gradient.Mag.HistEntropy', 'Gradient.Mag.HistEnergy', 'Gradient.Canny.Sum', 'Gradient.Canny.Mean', ] # Compute object properties if not provided if rprops is None: rprops = regionprops(im_label) numLabels = len(rprops) Gx, Gy = np.gradient(im_intensity) diffG = np.sqrt(Gx**2 + Gy**2) cannyG = canny(im_intensity) # Prepare data collection data = [] for i in range(numLabels): if rprops[i] is None: continue # get gradients of object pixels pixelGradients = np.sort(diffG[rprops[i].coords[:, 0], rprops[i].coords[:, 1]]) # Compute intensity histogram hist, bins = np.histogram(pixelGradients, bins=num_hist_bins) prob = hist / np.sum(hist, dtype=np.float32) # Canny edges for the object bw_canny = cannyG[rprops[i].coords[:, 0], rprops[i].coords[:, 1]] canny_sum = np.sum(bw_canny).astype('float') # Aggregate features features = [ np.mean(pixelGradients), # Mean np.std(pixelGradients), # Std scipy.stats.skew(pixelGradients), # Skewness scipy.stats.kurtosis(pixelGradients), # Kurtosis scipy.stats.entropy(prob), # HistEntropy np.sum(prob**2), # HistEnergy canny_sum, # Canny.Sum canny_sum / len(pixelGradients), # Canny.Mean ] data.append(features) # Create DataFrame feature_list = [ 'Gradient.Mag.Mean', 'Gradient.Mag.Std', 'Gradient.Mag.Skewness', 'Gradient.Mag.Kurtosis', 'Gradient.Mag.HistEntropy', 'Gradient.Mag.HistEnergy', 'Gradient.Canny.Sum', 'Gradient.Canny.Mean', ] fdata = pd.DataFrame(data, columns=feature_list) return fdata