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Many digital pathology workflows require the generation of large, multiresolution images for visualization or analysis. Increasing utilization of highly multiplexed imaging 
is also producing new multichannel data that is complex to process and store.  This data can be massive; a processed 5 gigapixel image with numerous channel and 
parameter variations can produce terrapixels worth of results.  This motivated us to create a simple, yet flexible, Python API to write WSI and multi-dimension large 
images.  This open source library can store generated or modified imaging data into existing formats that can be directly and efficiently handled by existing tools.  We 
demonstrate this in exploring optimum parameters for several use cases

The examples shown are based on open source software by Kitware, Inc.  Some of this work has been funded by 
National Library of Medicine grant R01LM013523, “Cloud strategies for improving cost, scalability, and accessibility of 
a machine learning system for pathology images” in collaboration with Northwestern University.  Some of the data is 
also from an Alzheimer’s research project at Emory.  The core software is HistomicsTK using the Digital Slide Archive 
reference deployment.  Most of the API shown for efficient image storage is part of the large_image python library.

Kitware provides advanced technical computing, state-of-the-art AI, and tailored software solutions to our customers.  
The Data and Analytics depatment works in digital special collections, including HistomicsTK as a platform for 
histology visualization and analysis.  Kitware partners with academic and commercial customers to optimize 
workflows, develop new capabilities, and advance scientific research.

Parameter Sweep Example: Positive Pixel Count

The optimum parameters are not always obvious at different scales. Parameter sweeps can be run on full resolution WSI 
and easily output and visualized.  A good viewer can let the user explore the different parameter values, zooming in and out 
as desired.  In this example, a positive pixel count was generated for different hue and hue-width values across a set of 
slides showing Tau factor on brain tissue.  Besides determining the optimal values to understand the biological features of 
the sample, the parameter sweep also shows the miscalibration of the lighting in the original scan.
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Efficient API for Writing Many-Dimension WSI 
Writing large images is efficient and simple.  The open source large_image library (see QR code) 
makes this easy in Python:

import large_image
result = large_image.new()
for nparray, x, y in fancy_algorithm():
    result.addTile(nparray, x, y)
result.write('sample.tiff', lossy=False)

Multi-dimension data is just as clean, whether the dimensions are channels, z, time, or complex 
parameter sweeps:

result = large_image.new()
wsi = large_image.open('multi_channel.tiff')
for channel in range(wsi.frames):
    for param1 in parameter_list:
        for tile in wsi.tileIterator(frame=channel, format='numpy'):
            data = my_algorithm(tile['tile'])
            result.addTile(data, tile['x'], tile['y'], c=frame, p1=param1)
# The writer supports a variety of formats, here we write OME NGFF
result.write('sample.zarr.zip', lossy=False)

Key features of the new API are
● Reduced code complexity by using well-tested, properly abstracted interfaces
● Increased compatibility via output files written in standard formats, including TIFF 

and OME NGFF.
● Can be used independently or as part of a HistomicsTK plugin

The HistomicsTK platform allows for efficient viewing of any number of axes of data.
● Composite channels or bands (colors)
● Max-merge on any axis
● Auto-scaling or custom contrast adjustments
● From the API, complex, on-the-fly tile compositing

Comparing Amazon Web Services Costs
Frequently, the same algorithms need 
to be run on a large number of images.  
Scalability can be achieved by using a 
cloud computing service, such as AWS 
EC2 compute instances and S3 
storage.  Especially when running 
length parameter sweeps, it is useful to 
run representative data sets on a 
variety of instances and with some 
method variations to determine the 
fastest or cheapest options.

A study was done with (left) a small 
image with 6250 parameter 
combinations and (right) a medium 
image with 1100 parameter 
combinations.  The algorithm was a 
PPC sweep where there is a balance 
between compute time and I/O access 
time.  Three different storage methods 
were compared; the zarr storage 
should have the least computation 
overhead but requires a relatively slow 
compression step; tiff output is highly 
parallellizable; deduplicate tiff reduces 
data volume at the expense of 
computation.

Data was loaded and saved directly to 
an S3 bucket.

For the small data set, compute times 
were only marginally improved with 
greater parallelism, buts costs rose 
significantly.  The processing method 
only made a mild difference.  If we 
need to run this process on a lot of 
images, the cheaper instances are 
sufficient.

For the medium data set, compute 
times are greatly improved with more 
cores and more parallelism.  With the 
added data volume, the smaller 
deduplicated tiffs are both faster and 
cheaper.  If we need to run this 
process on a lot of images, our budget 
and time constraints will determine 
which instances we prefer.

Running Algorithms and Visualizing Multi-Dimension Data
Scale any algorithm:
● Use a library of existing algorithms from traditional image processing and the latest trained AI models
● Package your own algorithms to run on images
● Run at different scales:

○ On a Region Of Interest.  Depending on the algorithm this can be a rectangle or a complex shape
○ Run on a single image
○ Run on a batch of images

Handle multi-dimensional and multi-channel data.  
Run algorithms on:
● Original data (such as H&E or the DAPI 

channel of an immunofluorescnce image)
● A specific frame of an image, including 

different channels, different z-slices, time, or 
arbitrary axes

● A composited view of an image.  Use the 
dynamic image controls to mix channels, 
adjust brightnesses, and make biological 
features more visible.

● Compositions from multiple images (fuse H&E 
with fluorescence data, for instance).

The open source reference software can be run on 
a local computer or on cloud compute resources.

Algorithms can run on the same machine or scale 
out to arbitrarily many worker nodes.

Easily run an algorithm as a batch on any number of images.  The 
same parameters can be applied in all cases.  For algorithms that 
take multiple inputs this can be processed as a matrix of values or a 
parallel set of values.

Superpixels and Masks 
To improve concordance between annotations, images can be divided into superpixels using standard algorithms like 
SLIC-0.  Typically, these algorithms expect the entire image to fit in memory, which is unrealistic with many WSI.  Rather, we 
can run superpixel algorithms on tiled subsets of the original image with overlapping regions between tiles.  This requires 
masking off edge superpixels, and providing a prefilled mask where adjacent superpixels were already located.

Using our new API, this process becomes vastly easier and more parallelizable.  Prior to this, the generation code had to do 
the bookkeeping for which tiles had been partially generated, maintaining individual tile masks.  With the new library, aside 
from substantially reduced code complexity, accessing partial results is faster by around a factor of 2, and 
parallelization becomes straightforward.

In the example shown to the 
right, the superpixels are a 
label map image that is one 
quarter the scale of the base 
WSI.  The overlaid colors are a 
simple tissue / background 
detector, though the same ML 
training algorithm is being used 
to detect specific tissue types.

The displayed UI is optimized 
to label the least certain 
superpixels.  The trained model 
can then predict labels on new 
images.

Parameter Sweep Example: Segmentation
Many segmentation algorithms are optimized for 
specific images and structures, such as nuclei on 
hematoxylin stained images.  When using other 
image modalities, these segmentation methods 
may not produce the desired results.  A sweep of 
algorithm parameters can show if the algorithm 
can successfully perform the desired 
segmentation, and, if so, what parameters are 
most effective.

In the shown example, a standard geometric 
nuclei detection algorithm was applied to a WSI 
stained to show tau proteins.  To determine if this 
algorithm could successfully highlight neurons 
with tau protein, the algorithm was run with five 
different adjustable parameters varying across a 
range of values.

After writing the results to a single file, the 
HistomicsTK interface allows exploring each of 
these parameters by just scrubbing through the 
selected values and seeing the resultant 
segmentations.

To better visualize the segmentations, colors can 
be adjusted or the image itself can be adjusted to 
be dimmer or brighter.

Axis controls can be compact (top) when the image is viewed in the annotation- 
focused user interface, or expansive (bottom) in the quick visualization mode. 


